PowerShell DSC Script Example – Node Configuration

The following PowerShell DSC script was converted from a Chef recipe for Windows located here. It’s easy to see that there’s a lot of similarity to the logic that PowerShell DSC and Chef use regarding their resources and provisioning or configuring as node (server). PowerShell DSC adds an additional feature in their Script Resource called ‘GetScript’ which handles gathering information from the Node (not used in this example) for use elsewhere in the Script Resource (must be passed back as a hash). In addition, idempotency is managed by ‘TestScipt’ passing back either $true or $false, where $false will cause ‘SetScript’ to execute. Lastly, all variables must be defined within a Script Resource (most commonly a script block) and not outside of the resource, otherwise they will be evaluated and stored at the time of the MOF file generation.

The following script demonstrates some of the server configuration functionality via PowerShell’s new DSC service, and performs the following actions:

  1. Timestamp: A Windows Event is created and an environmental variable is updated to show the last time this recipe was executed on the server.
  2. Enable Remote Desktop: The Remote Desktop (RDP) functionality is enabled.
  3. Disable Windows Updates: Windows automatic updates are disabled (use with caution – unless you have another update process, don’t do this).
  4. Enable Windows Remote Management: The Windows Remote Management functionality is enabled.
  5. Install IIS: The Application Server and Web Server roles are installed and enabled.
  6. Disable Server Reboot Tracking: A minor registry key is added/updated to stop the default practice of asking for a reboot reason on Windows Server.

DSC Publishing Steps:

The following steps are taken to publish a MOF file that’s ready to be consumed by nodes:

  1. PowerShell DSC script is written (below) and executed.
  2. In the current working directory (important!) a MOF file is created, representing the resources called out in the DSC script.
  3. The MOF file is named after the ‘Node’, in a sub-directory named after the ‘Configuration’ call (e.g. in this case it would be named ‘.\ServerConfig\Anybody.mof’)
    The MOF file is copied to the PowerShell DSC server’s hosting directory.
  4. A sister CheckSum file is generated for the newly created MOF file.
  5. Nodes will the download the MOF file via a REST call, specifying a specific MOF file by GUID (a node can only be configured to download a single MOF file). This will be covered in another blog.

DSC Script:

Configuration ServerConfig
{
  Node Anybody
  {
    # Leaves a timestamp indicating the last time this script was run on the node (this resource is intentionally not idempotent)
    Script LeaveTimestamp
    {
      SetScript = {
        $currentTime = Get-Date
        $currentTimeString = $currentTime.ToUniversalTime().ToString()
        [Environment]::SetEnvironmentVariable("DSCClientRun","Last DSC-Client run (UTC): $currentTimeString","Machine")
        eventcreate /t INFORMATION /ID 1 /L APPLICATION /SO "DSC-Client" /D "Last DSC-Client run (UTC): $currentTimeString"
      }
      TestScript = {
        $false
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    # Enables remote desktop access to the server
    Registry EnableRDP-Step1
    {
      Ensure = "Present"
      Key = "HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server"
      ValueName = "fDenyTSConnections"
      ValueData = "0"
      ValueType = "Dword"
      Force = $true
    }
 
    Registry EnableRDP-Step2
    {
      Ensure = "Present"
      Key = "HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp"
      ValueName = "UserAuthentication"
      ValueData = "1"
      ValueType = "Dword"
      Force = $true
    }
 
    Script EnableRDP
    {
      SetScript = {
        Enable-NetFirewallRule -DisplayGroup "Remote Desktop"
        eventcreate /t INFORMATION /ID 2 /L APPLICATION /SO "DSC-Client" /D "Enabled Remote Desktop access"
      }
      TestScript = {
        if ((Get-NetFirewallRule -Name "RemoteDesktop-UserMode-In-TCP").Enabled -ne "True") {
          $false
        } else {
          $true
        }
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    # Disables checking for updates
    Script DisableUpdates
    {
      SetScript = {
        $WUSettings = (New-Object -com "Microsoft.Update.AutoUpdate").Settings
        $WUSettings.NotificationLevel = 1
        $WUSettings.save()
        eventcreate /t INFORMATION /ID 3 /L APPLICATION /SO "DSC-Client" /D "Disabled Checking for Updates"
      }
      TestScript = {
        $WUSettings = (New-Object -com "Microsoft.Update.AutoUpdate").Settings
        if ($WUSettings.NotificationLevel -ne "1") {
          $true
        } else {
          $false
        }
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    # Verifies Windows Remote Management is Configured or Configures it
    Script EnableWinrm
    {
      SetScript = {
        Set-WSManQuickConfig -Force -SkipNetworkProfileCheck
        eventcreate /t INFORMATION /ID 4 /L APPLICATION /SO "DSC-Client" /D "Enabled Windows Remote Management"
      }
      TestScript = {
        try{
          # Use to remove a listener for testing
          # Remove-WSManInstance winrm/config/Listener -selectorset @{Address="*";Transport="http"}
          Get-WsmanInstance winrm/config/listener -selectorset @{Address="*";Transport="http"}
          return $true
        } catch {
          #$wsmanOutput = "WinRM doesn't seem to be configured or enabled."
          return $false
        }
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    # Installs the Applicaiton-Server Role
    Script InstallAppServer-LogEvent
    {
      SetScript = {
        eventcreate /t INFORMATION /ID 6 /L APPLICATION /SO "DSC-Client" /D "Installed Role: Applicaiton-Server"
      }
      TestScript = {
        if ((Get-WindowsFeature -Name Application-Server).Installed) {
          $true
        } else {
          $false
        }
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    WindowsFeature InstallAppServer-Step1
    {
      Name = "Application-Server"
      Ensure = "Present"
      IncludeAllSubFeature = $true
    }
 
    WindowsFeature InstallAppServer-Step2
    {
      Name = "AS-Web-Support"
      Ensure = "Present"
      IncludeAllSubFeature = $true
      DependsOn = "[WindowsFeature]InstallAppServer-Step1"
    }
 
    # Disables Shutdown tracking (asking for a reason for shutting down the server)
    Script DisableShutdownTracking-LogEvent
    {
      SetScript = {
        eventcreate /t INFORMATION /ID 7 /L APPLICATION /SO "DSC-Client" /D "Disabled Shutdown Tracking"
      }
      TestScript = {
        if ((Get-ItemProperty -Path 'HKLM:\\SOFTWARE\Policies\Microsoft\Windows NT\Reliability').ShutdownReasonOn -ne "0") {
          $false
        } else {
          $true
        }
      }
      GetScript = {
        # Do Nothing
      }
    }
 
    Registry DisableShutdownTracking
    {
      Ensure = "Present"
      Key = "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows NT\Reliability"
      ValueName = "ShutdownReasonOn"
      ValueData = "0"
      ValueType = "Dword"
      Force = $true
    }
  }
}
 
# The MOF filename must be a GUID. It can be any unique GUID and can be generated by the following PowerShell command ([guid]::NewGuid()).
$guid = "45b51dc8-132c-4052-8e3b-479c73d4c9cc"
 
# Create the MOF file from the above PowerShell DSC script
ServerConfig
 
# Used to copy the newly generated MOF file in the Pull Server's publishing location
$mofFile = "c:\dscscripts\ServerConfig\Anybody.mof"
$mofPath = "C:\Program Files\WindowsPowerShell\DscService\Configuration"
$DSCMofFile = $mofPath + "\" + $guid + ".mof"
 
Copy-Item $mofFile -Destination $DSCMofFile
# Generate a CheckSum sister file for the MOF file

 New-DSCCheckSum $DSCMofFile -Force
After the DSC script is executed on the node, New Windows Events should be logged to the configured node (server):

DSC-Example-1

And the following web page should be viewable on the node (server):

DSC-Example-2

The following practices are leveraged in this recipe:
  • A time stamp is logged on the server in order to track every time the script is executed via both a Windows Event and a Machine Environmental Variable (the environmental variable doesn’t refresh until you log out and log back in – is CMD getting cached somewhere?). This might be helpful for troubleshooting issues by correlating with the recipe execution timestamp.
  • A Windows Event is logged every time a resource is executed on the node (server). Event IDs are unique to the resource function.
  • All resources (except the timestamp resource) are idempotent. In other words, logic is in place to insure the resource is not executed if it doesn’t need to be. For example, if IIS has already been installed, then there should be no attempt to install it again. This is a ‘best practice’ for writing DSC scripts.
The following PowerShell functionality is exercised by this recipe:
  • An Environmental Variable is created/updated
  • Events are created with the ‘eventcreate’ command. The PowerShell ‘New-Event’ is not used because for Windows Server (not client) you need to register your custom event source with the server, so ‘eventcreate’ is simpler.
  • A Registry Key is added/updated
  • The Enable-FirewallRule cmdlet is used
  • A COM object is accessed and/or updated
  • The Set-WsmanQuickConfig cmdlet is used
  • The Get-WsmanInstance cmdlet is used
  • The Add-WindowsFeature cmdlet is used

Idempotency:

Notice that the Script Resource implements PowerShell script logic (via ‘TestScript’) in order to make the resource follow idempotent best practices (most of the other resources manage this for you). The logic implemented in the Script Resource is a reasonable attempt to determine if action is necessary, while not covering every possible permutation that might exist for a misconfigured server. Also notice how either $true or $false is passed back to the resource from the test logic. And finally, the ‘SetScript’ block is not executed unless ‘$false’ is returned by the ‘TestScript’ logic.

Enjoy!

Sample PowerShell 2.0 Remoting Commands

The following are a list of commands that I demonstrated at TechEd 2010 in New Orleans. Actually I should say that I intended to demo these commands, but wasn’t able to complete the entire list due to a conference wide network outage. :‐﴾

Many of these commands were intended to run against a real world web server in the Internet ﴾http://wsman.msft.net﴿. For one command ﴾WS‐Man ID﴿, I’ll include the web server in the command syntax. Otherwise I’ll just use “<server name>” to specify the destination. In addition, my demo server is configured to respond to WS‐Management from the original port 80 ﴾rather than the new port 5985 which was changed in WinRM 2.0﴿.

Note: If your client or end points are not Windows7 or Windows Server 2008 R2, then you will need to have PowerShell 2.0 installed on both systems. You can get the bits as Windows updates from http://download.microsoft.com.

Note: All commands are intended to be executed from PowerShell 2.0 or the PowerShell Integrated Scripting Environment (ISE).

Test WS‐Man connectivity without authentication.

This is useful for making sure the network and the Windows Remote Manage service are operational and intentionally does not check credentials since that is usually another level of configuration can be tested on its own.

test-wsman –computername wsman.msft.net:80 –authentication none

Create a credential token to be used throughout the remaining commands.

$cred = get-credential <administrator account name on end point>

Test WS‐Man connectivity with credentials ﴾note version info is now displayed﴿.

As mentioned above, it is helpful to be able to isolate authentication when troubleshooting management connectivity issues.

test-wsman -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Enumerate status for all Services.

This is merely using WS‐Man as the transport for accessing WMI providers. In the past, DCOM was the transport, but had many limitations due to its firewall unfriendly nature.

get-wsmaninstance -enumerate wmicimv2/win32_service -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Enumerate status for IIS Service.

This demonstrates getting the state of a specific service ﴾or element﴿ by using the “selectorset” parameter.

get-wsmaninstance wmicimv2/win32_service -selectorset @{name="w3svc"} -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Stop and Start the IIS Service.

Again, this is merely using WS‐Man as the transport in order to manipulate WMI methods that have been around since the dawn of time.

invoke-wsmanaction -action stopservice -resourceuri wmicimv2/win32_service -selectorset @{name="w3svc"} -computername <server name>:<port if other than 5985> -authentication default -credential $cred

This will verify the state of the stopped service.

get-wsmaninstance wmicimv2/win32_service -selectorset @{name="w3svc"} -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Now restart the IIS service.

invoke-wsmanaction -action startservice -resourceuri wmicimv2/win32_service -selectorset @{name="w3svc"} -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Store Output into an Object.

WMI instrumentation and actions are now very easy to automate with the addition of WS‐Man as a transport for remoting and PowerShell for scripting. The example here shows how the WMI information can be pulled into an object and properly formatted.

$operatingsystem = get-wsmaninstance -enumerate wmicimv2/win32_operatingsystem -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Show the output for the Last Boot Time for the end point.

$operatingsystem.LastBootUpTime

Format this Boot Time data into a proper .Net DateTime object.

[datetime]$operatingsystem.LastBootUpTime.datetime

Query a VM Host

A good deal of Microsoft’s hypervisor’s ﴾Hyper‐V﴿ as well as VMWare’s hypervisor’s instrumentation and management is exposed via WMI. The following command displays characteristics of the Hyper‐V parent as well as all of its children.

get-wsmaninstance -enumerate wmi/root/virtualization/Msvm_computersystem -computername <server name>:<port if other than 5985> -authentication default -credential $cred

Create a persistent connection to a Remote System.

This is using WS‐Man to create a connection to the remote system, not PowerShell. Note that the port is not used in‐line with the “ComputerName”.

Connect-WSMan -computername <server name> -authentication default -credential $cred -port <port if other than 5985>

This will show the configuration of the remote system, including the listener.

cd wsman:

The connection does need to be ended.

disconnect-WSMan -computername wsman.msft.net

Create and use a PowerShell Remoting Session.

Using PowerShell for remote management is much more powerful as it allows for the scripts ﴾or script blocks﴿ to be passed within the connection rather than requiring them to exist on the remote computer.

Note: If the script or script block that is being passed to the remote computer is using any special modules, they will need to exist on the remote computer (modules are note passed with the script).

$wsman = new-pssession -computername <server name> -port <port if other than 5985> -authentication default -credential $cred

This merely shows how to remotely execute a single PowerShell command on a remote machine and that the output is returned as a formatted object with the remote machine’s meta data attached to the results.

invoke-command -session $wsman -scriptblock {getprocess}

We’ll then put the results into an object. Notice now nicely the data in the object is formatted. This is not the case when non‐PowerShell commands are executed remotely ﴾see below﴿.

$output = invoke-command -session $wsman -scriptblock {getprocess}

This shows how to tear down the remote session.

remove-pssession -session $wsman

Create and use a PowerShell Remoting Session on Several Servers

One of the most powerful features of PowerShell remoting is the ability to execute scripts on many servers simultaneously ﴾knows as “fan out”﴿. There is also the ability to throttle the number of servers that are simultaneously running scripts. The example below shows how to specify multiple servers within the command, but there are other ﴾more programmatic﴿ ways of doing this ﴾see “get‐help” for examples﴿.

$several = new-pssession -computername <server  name 1>,<server name 2>,<server name 3> -port <port if other than 5985> -authentication default -credential $cred
invoke-command -session $several -scriptblock {getprocess}
$output = invoke-command -session $several -scriptblock {getprocess}

The following example show how a “fan out” PowerShell command can also be executed in the background and monitored by using the “asjob” flag.

invoke-command -session $several -scriptblock {getprocess} asjob
get-job
receive-job -id <ID # listed from "getjob">

The following example shows how the output is formatted if the executed command is not a PowerShell script or cmdlet.

invoke-command -session $several -scriptblock {ipconfig /all}

When the results are placed in a PowerShell object, the object is essentially an array of single lines of text.

$output = invoke-command -session $several -scriptblock {ipconfig /all}
remove-pssession -session $several

Enter into a PSSession

The following examples show how to remote to a single end point and execute commands ﴾in this case the commands will stop and restart the web service﴿.

$wsman = new-pssession -computername <server name> -port <port if other than 5985> -authentication default -credential $cred
enter-pssession -session $wsman
net stop w3svc
net start w3svc
exit-possession
remove-pssession -session $wsman

Enjoy!